Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Amino-1-(5-methyl-1-phenylpyrazol-4-ylcarbonyl)pyrazole-4-carbonitrile

Jia-Cheng Li, Yu-Hong Feng, Qiang Lin* and De-La Zhang

Key Laboratory of Topic Biological Resources of the Chinese Education Ministry, Key Laboratory of Hainan Fine Chemicals, College of Science and Engineering, Hainan University, Haikou 570228, People's Republic of China Correspondence e-mail: ljcfyh@263.net

Received 22 May 2007; accepted 22 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.115; data-to-parameter ratio = 14.2.

In the molecule of the title compound, $C_{15}H_{12}N_6O$, the central pyrazole ring forms dihedral angles of 25.10 (7) and 40.22 (7)° with the outer pyrazole and phenyl rings, respectively. In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular N-H···N hydrogen bonds. The dimers interact along the *b* axis through intermolecular C-H···O hydrogen bonds to form chains. There is an intramolecular N-H···O hydrogen bond.

Related literature

For related literature, see: Chen et al. (2000); Elgemeie et al. (2002); Wen et al. (2006).

Experimental

Crystal data $C_{15}H_{12}N_6O$ $M_r = 292.31$

Monoclinic, $P2_1/n$ a = 7.496 (2) Å b = 12.345 (4) Å c = 15.426 (5) Å $\beta = 102.052 (6)^{\circ}$ $V = 1396.0 (7) \text{ Å}^{3}$ Z = 4

Data collection

7890 measured reflections
2852 independent reflections
1877 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.035$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.046 & 201 \text{ parameters} \\ wR(F^2) = 0.115 & H\text{-atom parameters constrained} \\ S = 1.00 & \Delta\rho_{\max} = 0.19 \text{ e } \text{\AA}^{-3} \\ 2852 \text{ reflections} & \Delta\rho_{\min} = -0.16 \text{ e } \text{\AA}^{-3} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	Н⋯А	$D \cdots A$	$D - H \cdots A$
N5-H5A···O1	0.94	1.99	2.676 (2)	128
$N5 - H5B \cdot \cdot \cdot N6^{i}$	0.99	2.03	2.971 (2)	159
C5−H5···O1 ⁱⁱ	0.93	2.51	3.409 (3)	164

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Natural Science Foundation of Hainan Province (Nos. 20303, 80405) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2149).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.
Elgemeie, G. H., Elzanate, A. M., Elghandour, A. H. & Ahmed, S. A. (2002). Synth. Commun. 32, 3509–3517.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wen, L. R., Zhu, M., Li, M. & Zhang, S. S. (2006). J. Chem. Cryst. 36, 105-109.

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.36 \times 0.22 \times 0.18$ mm

T = 293 (2) K

supplementary materials

Acta Cryst. (2007). E63, o3467 [doi:10.1107/S1600536807030425]

5-Amino-1-(5-methyl-1-phenylpyrazol-4-ylcarbonyl)pyrazole-4-carbonitrile

J.-C. Li, Y.-H. Feng, Q. Lin and D.-L. Zhang

Comment

Pyrazole and its derivatives possess a wide spectrum of biological activities, such as antibacterial, fungicidal, herbicidal and insecticidal activities (Chen *et al.*, 2000). In the course of our systematic studies aimed at the synthesis of new bioactive compounds, we synthesized the title compound and its structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The molecule consists of two planar five-membered pyrazole rings (maximum displacement $0.002 (2)^\circ$ for atoms C10, C13 and C15) forming a dihedral angle 25.10 (7)°, which is close to the value of 28.96° observed in 5-amino-4-cyano-1-[(5-methyl-1-*tert*-butyl-4-pyrazolyl)carbonyl]-3-methylthio -1H-pyrazole (Wen *et al.*, 2006). The benzene ring forms a dihedral angle of 40.22 (7)° with the linked pyrazole ring. Bond distances and angles are as expected for this type of compound. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bonding interaction (Table 1). In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular N—H···N hydrogen bonds. The dimers interact through intermolecular N—H···N and C—H···O hydrogen bonds to form chains along the *b* axis (Fig. 2).

Experimental

To 10 ml anhydrous ethanol, a mixture of 1-phenyl-5-methyl-1*H*-4-pyrazolaldehyde (3 mmol, 0.65 g) and 2-cyano-3, 3ethyloxy-acrylonitrile(3 mmol, 0.48 g) synthesized according to the literature method (Elgemeie *et al.*, 2002) was added and refluxed at room temperature for about 6 h. The solvent was removed under reduced pressure and the residue was recrystallized from anhydrous ethanol. Single crystals suitable for X-ray analysis were obtained as colourless blocks by slow evaporation of the solvent (m.p. 486 K).

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93-0.96 Å, N—H = 0.94-0.98 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H)$ set at $1.2U_{eq}(C,N)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. View of the title compound with 35% probability ellipsoids.

Fig. 2. Perspective view of the molecular packing of the title compound viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

5-Amino-1-(5-methyl-1-phenylpyrazol-4-ylcarbonyl)pyrazole-4-carbonitrile

Crystal data	
C ₁₅ H ₁₂ N ₆ O	$F_{000} = 608$
$M_r = 292.31$	$D_{\rm x} = 1.391 { m Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 701 reflections
a = 7.496 (2) Å	$\theta = 3.2 - 24.3^{\circ}$
b = 12.345 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 15.426 (5) Å	T = 293 (2) K
$\beta = 102.052 \ (6)^{\circ}$	Block, colourless
$V = 1396.0 (7) \text{ Å}^3$	$0.36 \times 0.22 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Bruker APEX area-detector diffractometer	2852 independent reflections
Radiation source: fine-focus sealed tube	1877 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
T = 293(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
φ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 4$
$T_{\min} = 0.958, \ T_{\max} = 0.983$	$k = -15 \rightarrow 15$
7890 measured reflections	$l = -18 \rightarrow 19$

Refinement

<i>Refinement</i>	
Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.204P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.115$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.00	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
2852 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
201 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0059 (11) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1960 (2)	0.37490 (9)	0.35855 (8)	0.0561 (4)
N1	0.3081 (2)	0.50869 (11)	0.61167 (9)	0.0418 (4)
N2	0.3372 (2)	0.61420 (11)	0.58900 (10)	0.0510 (5)
N3	0.1562 (2)	0.54513 (11)	0.30584 (9)	0.0403 (4)
N4	0.1234 (2)	0.65456 (11)	0.31914 (10)	0.0465 (4)
N5	0.1473 (2)	0.42064 (12)	0.18564 (10)	0.0574 (5)
H5A	0.1731	0.3647	0.2279	0.069*
H5B	0.1326	0.4113	0.1208	0.069*
N6	-0.0183 (3)	0.63464 (13)	0.00460 (12)	0.0717 (6)
C1	0.3436 (2)	0.48244 (14)	0.70408 (11)	0.0408 (4)
C2	0.2944 (3)	0.55511 (15)	0.76258 (12)	0.0482 (5)
H2	0.2362	0.6195	0.7420	0.058*
C3	0.3319 (3)	0.53180 (17)	0.85192 (13)	0.0599 (6)
Н3	0.3004	0.5813	0.8917	0.072*
C4	0.4151 (3)	0.43640 (18)	0.88279 (14)	0.0629 (6)
H4	0.4384	0.4207	0.9431	0.075*
C5	0.4639 (3)	0.36406 (17)	0.82421 (13)	0.0599 (6)
Н5	0.5198	0.2991	0.8450	0.072*
C6	0.4307 (3)	0.38715 (15)	0.73466 (13)	0.0506 (5)
Н6	0.4667	0.3389	0.6953	0.061*
C7	0.2505 (2)	0.44502 (13)	0.54006 (11)	0.0388 (4)
C8	0.1977 (3)	0.32966 (14)	0.54553 (12)	0.0513 (5)
H8A	0.3005	0.2842	0.5432	0.077*
H8B	0.0994	0.3128	0.4967	0.077*
H8C	0.1591	0.3175	0.6003	0.077*
C9	0.2420 (2)	0.51173 (13)	0.46691 (11)	0.0389 (4)
C10	0.2967 (3)	0.61456 (13)	0.50210 (12)	0.0476 (5)
H10	0.3033	0.6757	0.4677	0.057*
C11	0.1981 (2)	0.47117 (13)	0.37665 (11)	0.0398 (4)
C12	0.1246 (2)	0.51948 (14)	0.21706 (11)	0.0416 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C13	0.0704 (3)	0.61514 (14)	0.17264 (11)	0.0435 (5)
C14	0.0218 (3)	0.62706 (14)	0.07981 (13)	0.0511 (5)
C15	0.0725 (3)	0.69317 (14)	0.23900 (12)	0.0468 (5)
H15	0.0408	0.7653	0.2271	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0872 (11)	0.0354 (7)	0.0427 (8)	-0.0006 (6)	0.0067 (7)	-0.0013 (6)
N1	0.0487 (9)	0.0368 (8)	0.0381 (9)	-0.0019 (7)	0.0047 (7)	-0.0011 (6)
N2	0.0674 (11)	0.0373 (9)	0.0429 (9)	-0.0072 (7)	-0.0005 (8)	0.0000 (7)
N3	0.0507 (9)	0.0345 (8)	0.0339 (8)	0.0017 (7)	0.0049 (7)	0.0011 (6)
N4	0.0592 (10)	0.0353 (8)	0.0433 (9)	0.0032 (7)	0.0070 (7)	-0.0009 (7)
N5	0.0882 (13)	0.0446 (9)	0.0366 (9)	0.0111 (9)	0.0067 (8)	-0.0033 (7)
N6	0.1221 (17)	0.0467 (10)	0.0413 (10)	0.0064 (10)	0.0057 (10)	0.0022 (8)
C1	0.0401 (10)	0.0434 (10)	0.0362 (10)	-0.0023 (8)	0.0017 (8)	0.0011 (8)
C2	0.0509 (12)	0.0464 (11)	0.0449 (11)	0.0021 (9)	0.0046 (9)	-0.0027 (9)
C3	0.0720 (15)	0.0644 (14)	0.0418 (12)	-0.0012 (11)	0.0083 (10)	-0.0108 (10)
C4	0.0701 (15)	0.0724 (15)	0.0409 (12)	-0.0051 (12)	-0.0003 (10)	0.0060 (11)
C5	0.0616 (14)	0.0584 (13)	0.0539 (13)	0.0057 (10)	-0.0012 (11)	0.0124 (10)
C6	0.0514 (12)	0.0496 (11)	0.0492 (12)	0.0084 (9)	0.0071 (9)	0.0007 (9)
C7	0.0388 (10)	0.0361 (9)	0.0408 (10)	0.0018 (7)	0.0068 (8)	-0.0027 (8)
C8	0.0674 (14)	0.0408 (10)	0.0465 (11)	-0.0069 (9)	0.0139 (10)	0.0005 (8)
C9	0.0409 (11)	0.0360 (9)	0.0382 (10)	-0.0004 (7)	0.0042 (8)	0.0009 (7)
C10	0.0599 (13)	0.0385 (10)	0.0403 (11)	-0.0052 (9)	0.0011 (9)	0.0036 (8)
C11	0.0429 (11)	0.0367 (10)	0.0384 (10)	-0.0015 (8)	0.0049 (8)	0.0004 (8)
C12	0.0447 (11)	0.0438 (10)	0.0350 (10)	-0.0013 (8)	0.0056 (8)	-0.0017 (8)
C13	0.0494 (12)	0.0423 (10)	0.0373 (10)	-0.0010 (8)	0.0052 (8)	0.0027 (8)
C14	0.0694 (15)	0.0378 (10)	0.0436 (12)	0.0015 (9)	0.0061 (10)	0.0034 (9)
C15	0.0562 (13)	0.0370 (10)	0.0449 (11)	0.0033 (8)	0.0053 (9)	0.0051 (8)

Geometric parameters (Å, °)

1.2201 (19)	C4—C5	1.373 (3)
1.351 (2)	C4—H4	0.9300
1.3779 (19)	C5—C6	1.381 (3)
1.431 (2)	С5—Н5	0.9300
1.311 (2)	С6—Н6	0.9300
1.377 (2)	С7—С9	1.388 (2)
1.3959 (19)	С7—С8	1.485 (2)
1.408 (2)	C8—H8A	0.9600
1.305 (2)	C8—H8B	0.9600
1.337 (2)	C8—H8C	0.9600
0.9418	C9—C10	1.408 (2)
0.9892	C9—C11	1.451 (2)
1.140 (2)	C10—H10	0.9300
1.376 (3)	C11—O1	1.2201 (19)
1.380 (2)	C12—C13	1.383 (2)
1.378 (3)	C13—C15	1.403 (2)
	1.2201 (19) 1.351 (2) 1.3779 (19) 1.431 (2) 1.311 (2) 1.377 (2) 1.3959 (19) 1.408 (2) 1.305 (2) 1.337 (2) 0.9418 0.9892 1.140 (2) 1.376 (3) 1.380 (2) 1.378 (3)	1.2201 (19) $C4-C5$ $1.351 (2)$ $C4-H4$ $1.3779 (19)$ $C5-C6$ $1.431 (2)$ $C5-H5$ $1.311 (2)$ $C6-H6$ $1.377 (2)$ $C7-C9$ $1.3959 (19)$ $C7-C8$ $1.408 (2)$ $C8-H8A$ $1.305 (2)$ $C8-H8B$ $1.337 (2)$ $C8-H8C$ 0.9418 $C9-C10$ 0.9892 $C9-C11$ $1.140 (2)$ $C10-H10$ $1.376 (3)$ $C11-O1$ $1.380 (2)$ $C12-C13$ $1.378 (3)$ $C13-C15$

C2—H2	0.9300	C13—C14	1.410 (3)
C3—C4	1.371 (3)	С15—Н15	0.9300
С3—Н3	0.9300		
C7—N1—N2	112.51 (14)	N1—C7—C8	123.70 (15)
C7—N1—C1	130.07 (15)	C9—C7—C8	130.37 (15)
N2—N1—C1	117.42 (13)	С7—С8—Н8А	109.5
C10—N2—N1	104.34 (13)	С7—С8—Н8В	109.5
C12—N3—N4	111.69 (13)	H8A—C8—H8B	109.5
C12—N3—C11	125.91 (14)	С7—С8—Н8С	109.5
N4—N3—C11	122.10(14)	H8A—C8—H8C	109.5
C15—N4—N3	103.88 (14)	H8B—C8—H8C	109.5
C12—N5—H5A	116.2	C7 - C9 - C10	105.15 (15)
C12—N5—H5B	118.5	C7 - C9 - C11	102.15(15) 122.55(15)
H5A—N5—H5B	125.3	C10-C9-C11	132 12 (16)
C_{2} C_{1} C_{6}	120.26(17)	N2_C10_C9	132.12(10) 112(20(15))
$C_2 = C_1 = C_0$	119.07 (16)	$N_{2} = C_{10} = H_{10}$	12.20 (13)
$C_{2} = C_{1} = N_{1}$	120.65 (17)	C_{2} C_{10} H_{10}	123.9
$C_1 = C_2 = C_3$	120.03(17) 110.53(18)	01 C11 N3	123.3
$C_1 = C_2 = C_3$	119.55 (16)	O1 = C11 = N3	117.65 (15)
$C_1 = C_2 = H_2$	120.2	O1 = C11 = O2	117.03 (15)
$C_3 = C_2 = H_2$	120.2	01 - 01 = 0	123.03 (15)
$C_4 = C_3 = C_2$	120.0 (2)	01-01-09	123.03 (15)
C4—C3—H3	119.7	N3-C11-C9	119.32 (15)
C2—C3—H3	119.7	N5-C12-N3	124.19 (15)
C3_C4_C5	119.6 (2)	N5-C12-C13	130.26 (17)
C3—C4—H4	120.2	N3—C12—C13	105.54 (15)
C5—C4—H4	120.2	C12—C13—C15	105.51 (16)
C4—C5—C6	120.44 (19)	C12—C13—C14	125.39 (16)
С4—С5—Н5	119.8	C15—C13—C14	129.09 (16)
С6—С5—Н5	119.8	N6—C14—C13	178.7 (2)
C1—C6—C5	119.45 (19)	N4—C15—C13	113.37 (16)
С1—С6—Н6	120.3	N4—C15—H15	123.3
С5—С6—Н6	120.3	C13—C15—H15	123.3
N1—C7—C9	105.79 (15)		
C7—N1—N2—C10	0.0 (2)	C11—C9—C10—N2	-174.81 (19)
C1—N1—N2—C10	179.30 (16)	O1-O1-C11-N3	0.0 (3)
C12—N3—N4—C15	0.2 (2)	O1-O1-C11-C9	0.0 (3)
C11—N3—N4—C15	-173.90 (17)	C12-N3-C11-O1	-4.7 (3)
C7—N1—C1—C2	-140.9 (2)	N4—N3—C11—O1	168.54 (17)
N2—N1—C1—C2	39.9 (2)	C12—N3—C11—O1	-4.7 (3)
C7—N1—C1—C6	41.0 (3)	N4—N3—C11—O1	168.54 (17)
N2—N1—C1—C6	-138.21 (18)	C12—N3—C11—C9	175.11 (17)
C6—C1—C2—C3	-0.3 (3)	N4—N3—C11—C9	-11.7 (3)
N1—C1—C2—C3	-178.45 (17)	C7—C9—C11—O1	-12.8 (3)
C1—C2—C3—C4	-1.0 (3)	C10—C9—C11—O1	161.6 (2)
C2—C3—C4—C5	0.9 (3)	C7—C9—C11—O1	-12.8 (3)
C3—C4—C5—C6	0.4 (3)	C10—C9—C11—O1	161.6 (2)
C2—C1—C6—C5	1.6 (3)	C7—C9—C11—N3	167.39 (16)
N1—C1—C6—C5	179.71 (17)	C10—C9—C11—N3	-18.2 (3)

supplementary materials

-1.6 (3)	N4—N3—C12—N5	179.26 (17)
0.2 (2)	C11—N3—C12—N5	-6.9 (3)
-179.00 (17)	N4—N3—C12—C13	0.0 (2)
-175.96 (16)	C11—N3—C12—C13	173.81 (17)
4.8 (3)	N5-C12-C13-C15	-179.4 (2)
-0.3 (2)	N3-C12-C13-C15	-0.2 (2)
175.53 (19)	N5-C12-C13-C14	1.4 (4)
175.40 (16)	N3-C12-C13-C14	-179.35 (19)
-8.8 (3)	N3—N4—C15—C13	-0.3 (2)
-0.2 (2)	C12—C13—C15—N4	0.3 (2)
0.3 (2)	C14—C13—C15—N4	179.4 (2)
	-1.6 (3) 0.2 (2) -179.00 (17) -175.96 (16) 4.8 (3) -0.3 (2) 175.53 (19) 175.40 (16) -8.8 (3) -0.2 (2) 0.3 (2)	-1.6 (3) N4—N3—C12—N5 0.2 (2) C11—N3—C12—N5 -179.00 (17) N4—N3—C12—C13 -175.96 (16) C11—N3—C12—C13 4.8 (3) N5—C12—C13—C15 -0.3 (2) N3—C12—C13—C14 175.40 (16) N3—C12—C13—C14 -8.8 (3) N3—N4—C15—C13 -0.2 (2) C12—C13—C15—N4 0.3 (2) C14—C13—C15—N4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N5—H5A…O1	0.94	1.99	2.676 (2)	128	
N5—H5B···N6 ⁱ	0.99	2.03	2.971 (2)	159	
C5—H5···O1 ⁱⁱ	0.93	2.51	3.409 (3)	164	
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) $x+1/2$, $-y+1/2$, $z+1/2$.					

sup-6

Fig. 1

Fig. 2

